
How to Write a High-impact Review Paper

LAM SU SHIUNG
Institute of Tropical Aquaculture & Fisheries
(Akuatrop),
Universiti Malaysia Terengganu

1

OUTCOMES OF THIS SHARING

This talk will answer followings questions:

- 1. Why review papers?
- 2. What is a review paper?
- 3. How to write a review paper?
- 4. Where to submit & How to submit
- 5. Is there any challenges?

OVERVIEW

- Submission of a manuscript to a journal is usually an exciting prospect for researchers, especially younger ones.
- News of acceptance from the Editor is even more exciting.
- News of rejection is usually very depressing.

 Never air

3

PART A: Background

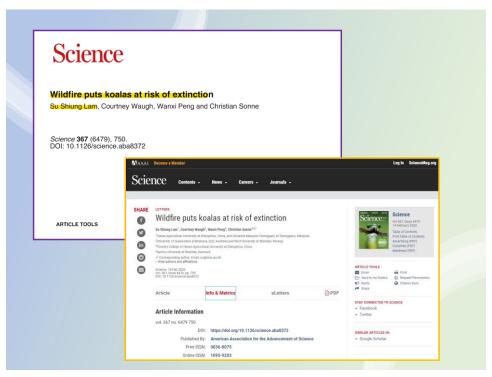
Δ

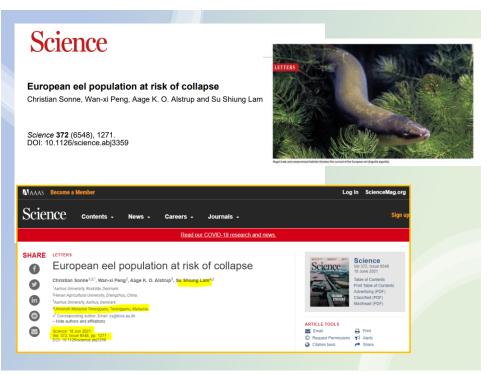
Su Shiung LAM

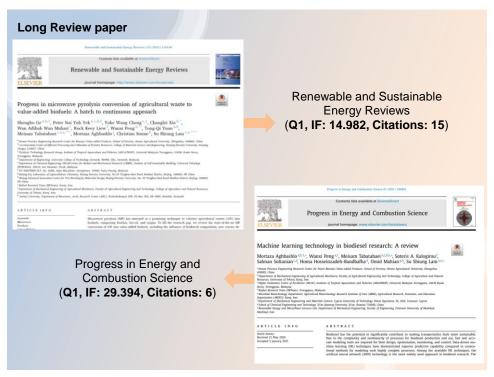
- Deputy Director of International Centre, Office of Deputy Vice Chancellor (Academic and International), Universiti Malaysia Terengganu (Malaysia)
- Professor, Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu (Malaysia)
- · Chair Professor, Henan Province (China)
- Distinguished Professor, Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, University (China)
- Visiting Professor, Henan Province Engineering Research Center for Biomass Value-added Products, Henan Agricultural University (China)
- · Visiting Research Fellow, Education University of Hong Kong (China)
- Ts./P.Tech, Professional Technologist, Malaysia Board of Technologies (MBOT), Green Technology
- Certified Environmental Professional/ Competent Person in Hazardous Waste Management, EiMAS, DOE Malaysia

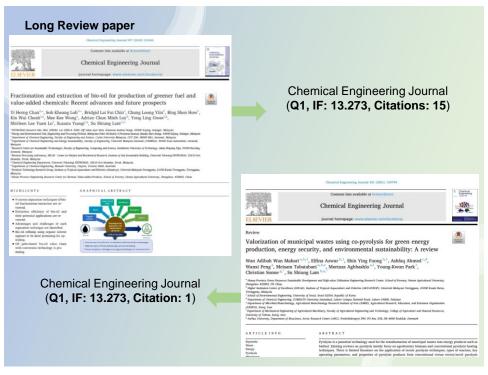
5

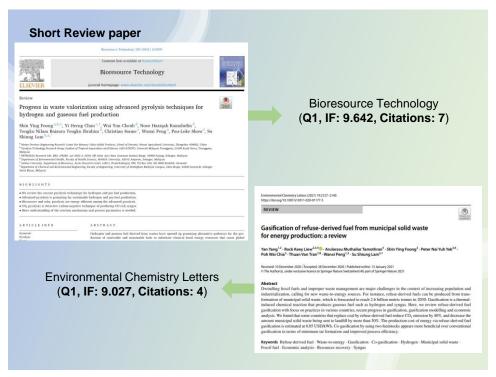

Editorial Role

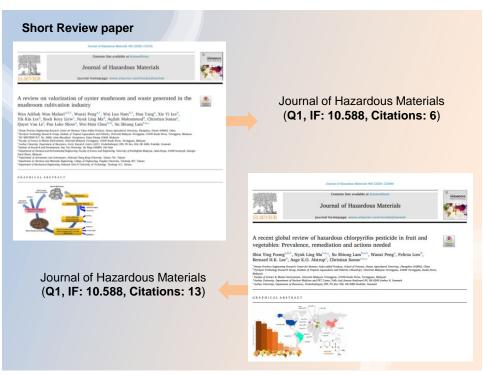

- ❖ Deputy Editor in Chief 副总主编:
 - Journal of Sustainability Science & Management (Scopus)
- ❖ Editor 主编:
 - Environmental Pollution (IF: 8.071, Q1)
- ❖ Associate Editor 副主编:
 - Environmental Geochemistry and Health (IF: 4.609, Q1)
 - Frontiers in Energy Research (IF: 4.008, Q2)
 - Energy & Environment (IF: 2.945, Q3)
 - Environmental Advances (Elsevier)
- * Editorial Board Member:
 - Bioresource Technology (IF: 9.642, Q1)
 - Chinese Chemical Letters (IF: 6.779, Q1)
 - Materials Science for Energy Technologies (MSET) (Scopus)
 - Renewable and Sustainable Energy Transition (Elsevier)
- ❖ Guest Editor of Special Issue 客座编辑:
 - Journal of Hazardous Materials (IF: 10.588, Q1)
 - Bioresource Technology (IF: 9.642, Q1)
 - Environmental Pollution (IF: 8.071, Q1)
 - Environmental Research (IF: 6.498, Q1).
 - Journal of Analytical and Applied Pyrolysis (IF: 5.541, Q1)

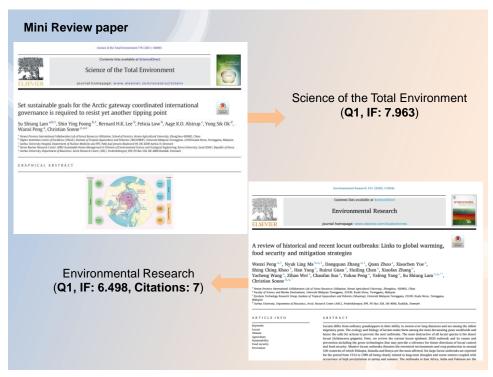


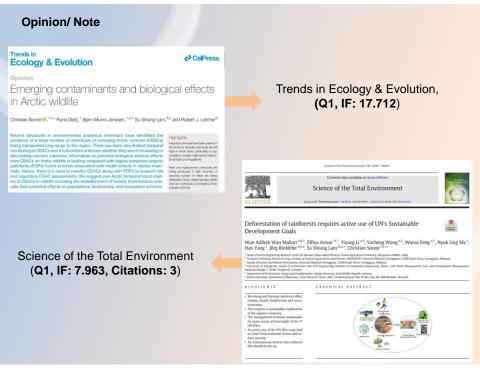






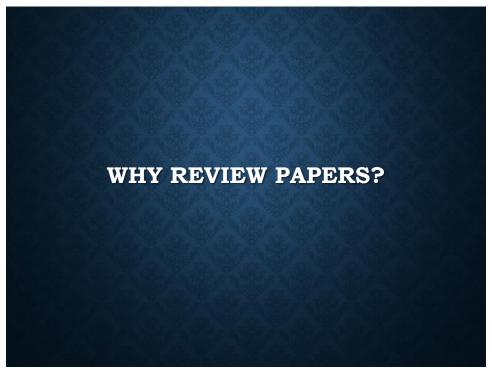


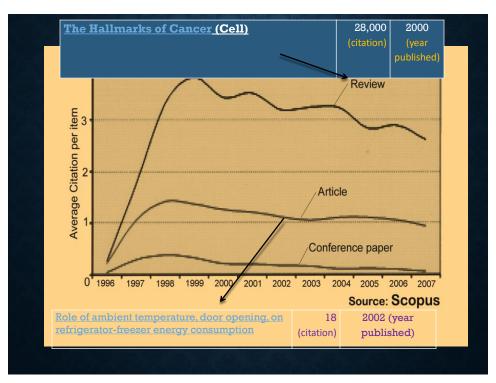






Reviewer for Journal https://publons.com/resear su-shiung-lam/peer-review/	cher/1438933/
Journal Title	IF
Progress in Energy and Combustion Science	29.394
Trends in Biotechnology	19.536
Renewable and Sustainable Energy Reviews	14.982
Chemical Engineering Journal	13.273
Critical Reviews in Environmental Science & Technology	12.561
Water Research	11.236
Journal of Hazardous Materials	10.588
Resources, Conservation & Recycling	10.204
Applied Energy	9.746
Energy Conversion and Management	9.709
Bioresource Technology	9.642
Environment International	9.621
Journal of Cleaner Production	9.297
Composites Part B: Engineering	9.078
ACS Sustainable Chemistry & Engineering	8.198
Environmental Science: Nano	8.131
Environmental Pollution	8.071
Energy	7.147





VALUE OF UNPUBLISHED WORK

- Who benefits?
 - Possibly, person who did the work (?)
 - Nobody
- Who is disadvantaged?
 - Other researchers
 - Funding body

CITATION TREND OF MY REVIEW PAPERS

Publication titles	Total citations	Year published
A review on waste to energy processes using microwave pyrolysis	184	2012
Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques	166	2016
Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions	111	2020
Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production	85	2016
Transformation of biomass into carbon nanofiber for supercapacitor application – A review	74	2018
A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels	41	2020
Recent technologies for treatment and recycling of used disposable baby diapers	33	2019
Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review	21	2021
Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach	15	2021

25

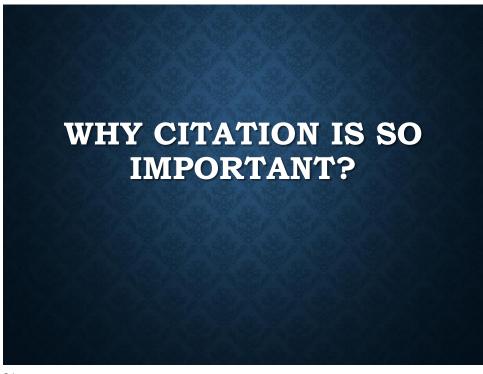
Citation of review articles

Title of article	Journal name	Publication year	Total citations
Biodiesel production: a review	Bioresource Technology	1999	6334
Hydrolysis of lignocellulosic materials for ethanol production: a review	Bioresource Technology	2002	5652
Removal of heavy metal ions from wastewaters: A review	J. Envi. Management	2011	3336
Recent developments in Life Cycle Assessment	J. Envi. Management	2009	1955
Science and technology of novel processes for deep desulfurization of oil refinery streams: a review	Fuel	2003	1542

Citation of review articles: Civil Engineering

Title of article	Journal name	Publication year	Total citations
Vibration based condition monitoring: A review	Structural health monitoring	2004	1027
Neural networks in civil engineering: 1989-2000	Computer-aided civil and infrastructure engineering	2001	443
Review of NDT methods in the assessment of concrete and masonry structures	NDT & E INTERNATIONAL	2001	453
	CALL SERVICE AND ADDRESS.		CALL STATE

SCIENCE: CHEMISTRY/MATERIALS			
Title of article	Journal name	Publication year	Total citations
The surface science of titanium dioxide	Surface Science Reports	2003	6927
TiO"2 photocatalysis and related surface phenomena	Surface Science Reports	2008	4562
A review of chitin and chitosan applications	Reactive and Functional Polymers	2000	5046
Recent developments in cathode materials for lithium ion batteries	Journal of Power Sources	2010	1210
Science and technology of novel processes for deep desulfurization of oil refinery streams: a review	Fuel	2003	1542

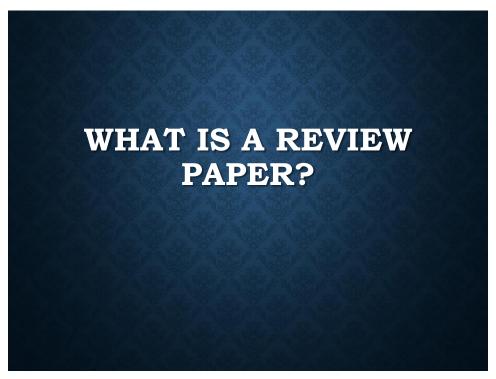

Biochemistry, Genetics and Molecular Biology

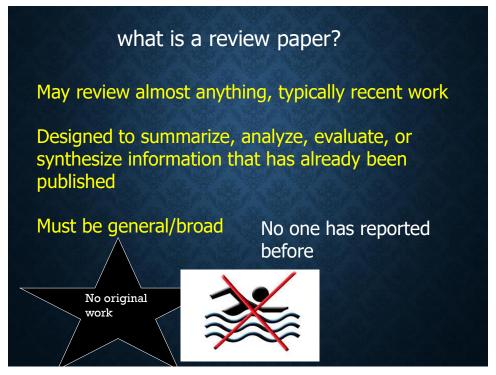
Title of article	Journal name	Publication year	Total citations
Hallmarks of Cancer: The Next Generation	Cell	2011	28930
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications	Biomaterials	2005	5765
MicroRNAs - Genomics, Biogenesis, Mechanism, and Function	cell	2004	27111

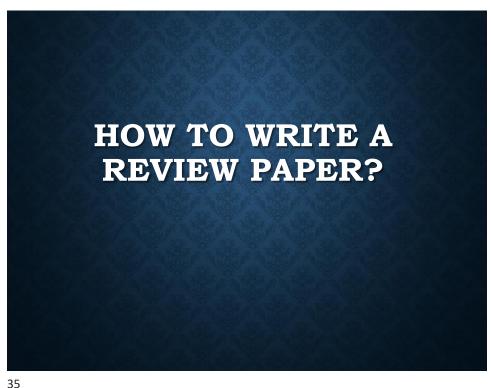
29

Physics and Astronomy

Title of article	Journal name	Publication year	Total citations
Complex networks: Structure and dynamics	Physics report	2006	8122
Raman spectroscopy in graphene	Physics report	2009	3008
Community detection in graphs	Physics report	2010	6521

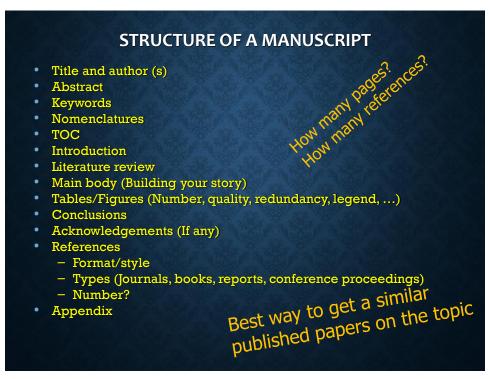


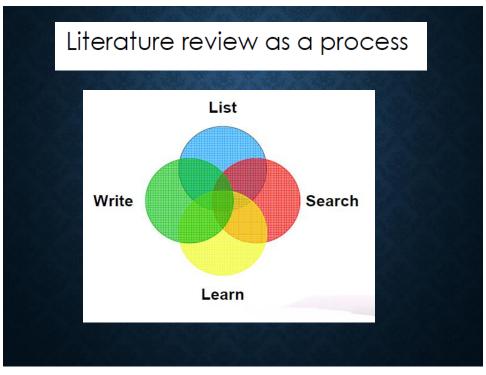

IMPORTANCE OF CITATIONS


- An indicator of IMPACT (usefulness)
- Very important ranking criteria

Citations per faculty (20%)

- Become internationally recognized researcher
- · Need for promotion
- Highly cited authors/rewarding (e.g. plenary/keynote/invited speaker, contribute book chapter, joint review paper, grant application, etc)


What is a literature review?


- A description of your topic area, supported by references (Own and others work)
- A summary, discussion and critical analysis of academic work related to your research question

TITLE

- Tell readers what your paper is all about
- The title of the manuscript needs to be short and relevant to the subject matter
- Attract the reader's attention
- General/broad for larger audience
- Avoid jargon and abbreviations

39

Examples of good title

- 1. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production
- 2. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach
- 3. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry

Examples of good title

- 4. Emerging contaminants and biological effects in Arctic wildlife
- 5. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies
- 6. Machine learning technology in biodiesel research: A review

41

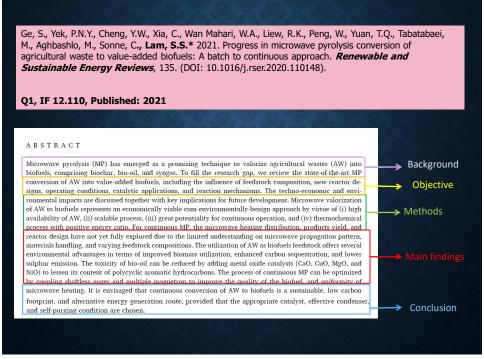
Author (s) names

• Author names and affiliations should be in the following format.

Su Shiung Lam $^{\rm a}$, Nyuk Ling Ma $^{\rm b}$, Wanxi Peng $^{\rm c}$ and Christian Sonne $^{\rm d}$


a) Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

Email: lam@umt.edu.my


Abstract

Tell readers what you did and the important findings

- The abstract should be *short and precise* giving clear indication of what investigation has been described in the manuscript and the precise conclusion to entice/attract the journal editors/readers.
- It is the summary of the work
- About 200-300 words should be sufficient.

43

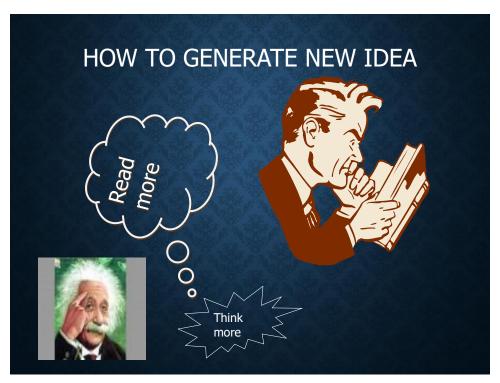
Keywords

Used by indexing and abstracting services:

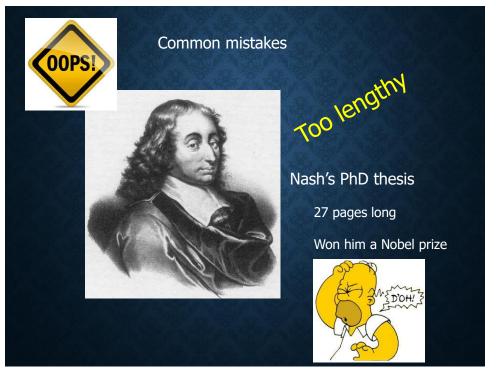
- They are the labels of your manuscript
- The keywords should *reflect the subject matter* of the manuscript in the same way the title of the manuscript should.
- As such most of the keywords may already be present in the title.
- The number of keywords should not be more than *five*.
- Use only established abbreviations (i.e. DNA)

45

Introduction


Provide context to convince readers that you clearly know why your work is important

- The introduction section should contain *brief statement* of the need for the investigation, review of up to date literature and specific objectives.
- This section should reflect the new contents of the review


INTRODUCTION

Too long
Too general/does not reflect content
No objectives/Objectives are not
clear/achievable/measurable
Not focused
Novelty is not highlighted
Latest/ relevant literature

49

Examples in addressing originality (Review paper)

The authors of the paper cited in reference [8] have briefly discussed various solar PV panel cooling technologies.

However, only a few technologies were introduced while the main focus of the paper was on the testing and performance of a developed Ground-Coupled Central Panel Cooling System (GC-CPCS).

In reference [9], the authors presented an overview of various methods that can be employed for cooling photovoltaic cells.

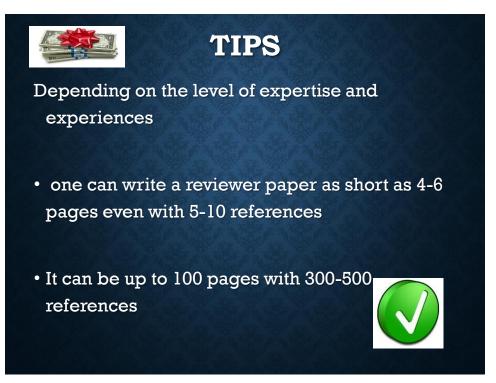
However, when looking closely, it can be seen that the focus of the paper was only on examining the passive, forced air and liquid forced convection cooling methods applied to different solar concentrator systems.

Unlike the above-mentioned review studies, this paper provides a comprehensive review of how different technologies can be used to minimize the negative effects of increased temperature, while trying to improve the performance of a PV panel operating beyond the recommended temperature of the Standard Test Conditions (STC).

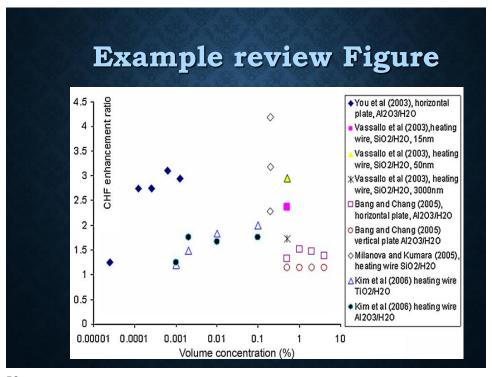
Taken from;

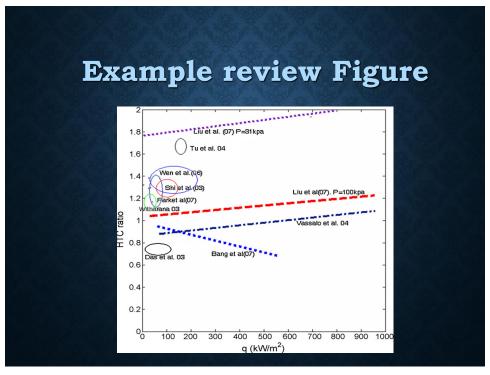
Renewable and Sustainable Energy Reviews 79 (2017) 192–203

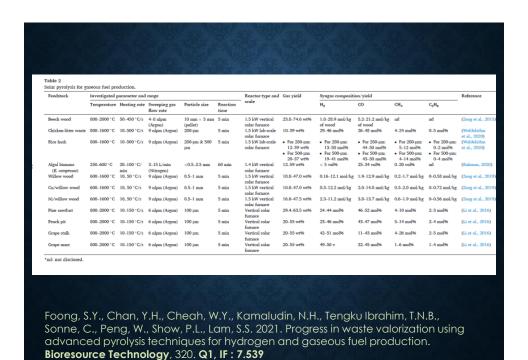
53


SOURCES OF LITERATURE

- Sciencedirect
- IEEE explore
- Springer
- Taylor and Francis
- Multiscience
- Inderscience
- Wiley
- Yahoo, Google search (put key words)
- Scopus
- Engineering Village
- Pro-quest-digital dissertation
- Ingentaconnect
- Personal communications
- Etc...







How configuration: Cross flow sugar) With smood place degradation composite degradation composite personnet flox 696 reduced fooling C2 recorded.	via [100] attion process, dilution prior to paration. paration. [101] arction prior to paration. Reference
Bio-off from rice Displayed and Published enters Published enter	ation process, dilution prior to paration. [101]
Be-off for whost table is the control in the contro	multiple stages of [101] raction prior to paration.
Reverse Comosis (RO) Hat Cerea planwood Sheet Membrane via faet pyrobysis *Tomperature: 21 'C *How configurations Cross flow *Total argur	
Sheat Membrane via fast pyrolysis • Temperaturus: 21°C • Total sugus • 24.97 with (total vagus) acquest led force men caretal to force men monoul plee degradation corons of with monoul plee degradation corons. The corons of th	e butanal and ethyl [103]
	abrane separation were tembrane performance. olic and other lignin unds, increased to 156 kg/h m²) and
**Samplification (DF) and Model agroups a **Persurer 4-5.8 MFs	
Method Feedstock Parameters investigated Species isolated Concentration in feed % removed Observations	Reference
netichgens via Eketrosorption tine 2 h Propionate (acetate) Od-5-4.5 mM intermedate propionate Od-5-4.5 mM propionate propion	acids (acetate and moval was more oil of a higher water to the limited ion
Method Feedstock II. Parameters Species isolated Concentration in feed Extraction rate Observations investigated	Reference
	extraction rate in two [105] ethyl acetate, which
Model aqueous $P_{666,14}Cl, P_{666,14}(N)$ • Ratio of IL to • Acetic acid • 10 wrfw (acetic acid) • -92% (acetic acid) • Phosphonium I fraction of bio odi $(CN)_2$], aqueous phase: • Acetol • 10 wrfw (acetol) • -47% (acetol) extraction efficiency of the contraction of the contra	Ls showed the highest [106] iency for acetic acid nyde, with reasonable ol.

Conclusions

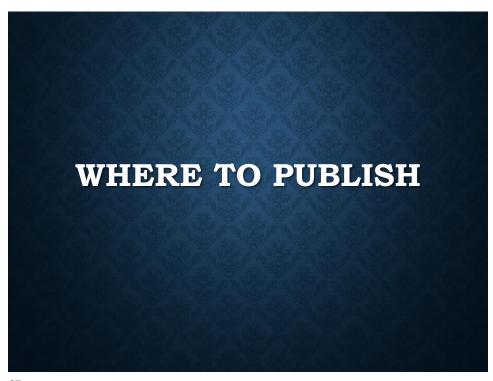
- The conclusions section should contain short and precise concluding remarks arising out of the investigation.
- Only the *very important points* should be included in this section.
- It is the concrete achievement/findings of the work
- Should highlight the achievements of objectives

63

Conclusions

5. Conclusion

This review presents various advanced pyrolysis techniques as potential routes to produce hydrogen and gaseous fuel. Current technologies and waste feedstock used in hydrogen and gaseous fuel production as found in the scientific literature showed that there are six types of advanced pyrolysis technologies and the key parameters that influence gas yield and composition are revealed. These key parameters are type of feedstock, reaction temperature, carrier gas flow rate and feedstock size. Challenge and future direction of advanced pyrolysis technologies have also been discussed to improve the yield and quality of hydrogen and gaseous products.


Foong, S.Y., Chan, Y.H., Cheah, W.Y., Kamaludin, N.H., Tengku Ibrahim, T.N.B., Sonne, C., Peng, W., Show, P.L., Lam, S.S. 2021. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production. **Bioresource Technology**, 320. **Q1, IF: 7.539**

Acknowledgement (s)

■ The acknowledgement is used to give credit to the funding authorities of the research work, collaborators or other colleagues whose names do not appear as coauthors but who made some contribution in producing the material for the manuscript.

65

STEP BY STEP PROCEDURE TO WRITE A REVIEW PAPER

TOP NOTCH JOURNALS

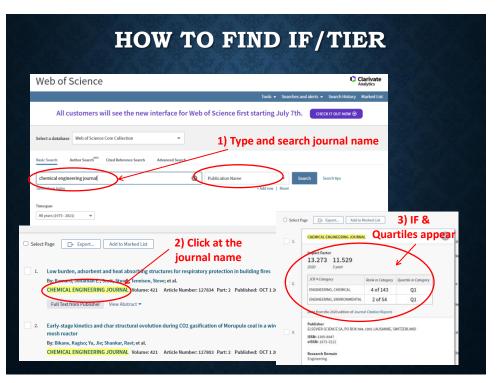
The New England Journal of Medicine: IF 94.245

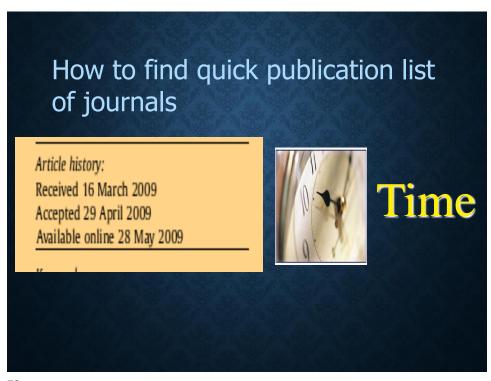
• The Lancet: IF 79.321

• Chemical reviews : IF 60.622

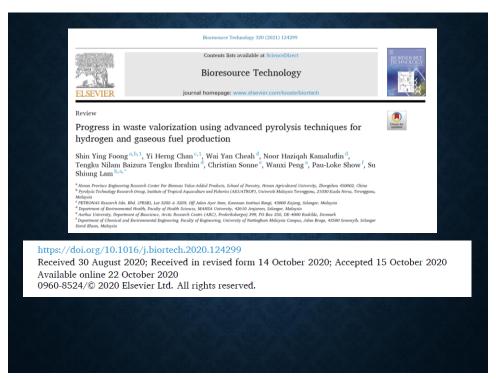
Nature: IF 49.962Science: IF 47.728Cell: IF 41.582

Top journals in my field :


Progress in Energy and Combustion Science (IF 29.394)


• Renewable and Sustainable Energy Reviews (IF 14.982)

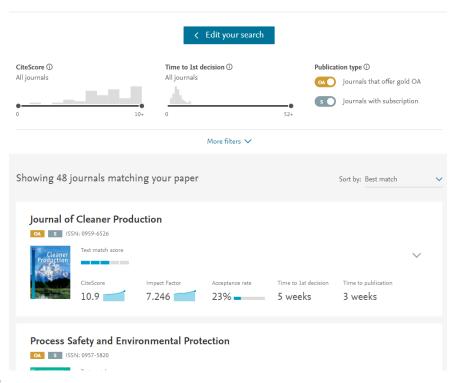
Chemical Engineering Journal (IF 13.273)

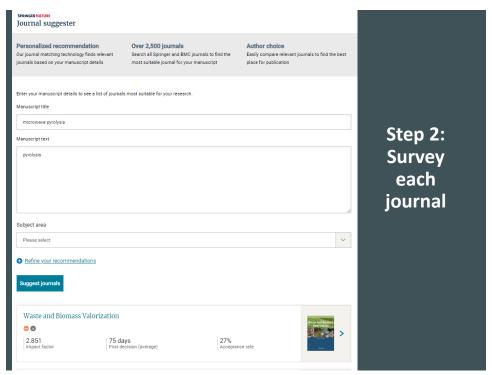

• Journal of Hazardous Materials (IF 10.588)

71


Where to publish?

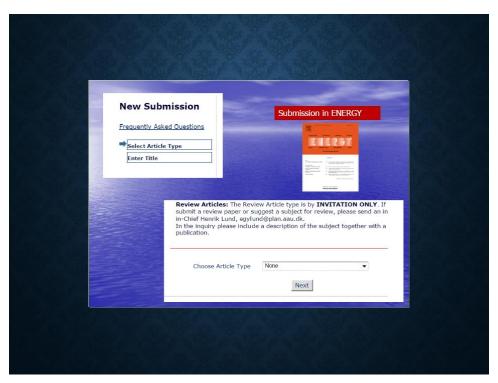
- See publication history
- Get experiences by publishing in diverse group journals
- Some journals even initially reject
- Some journals allow submissions and process for a review
- Invite international experts to make team stronger
- Don't submit many papers by the same author in the same journal!

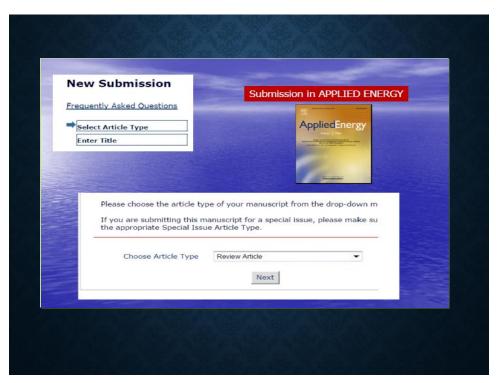


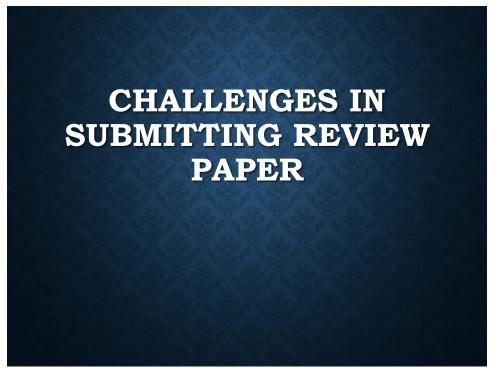

SciVerse	WWW.SCIENCEDIRECT.COM
ScienceDirect	TOP 25
www.sciencedirect.com	
select your interest	u u
Energy	
[all journals]	· ·
browse top 25 archive	
Current: April to June 2011	·



		,
Or https://jou	rnalsuggester.springe	er.com/
SPRINGER NATURE Journal suggester		
Personalized recommendation Our journal matching technology finds relevant journals based on your manuscript details	Over 2,500 journals Search all Springer and BMC journals to find the most suitable journal for your manuscript	Author choice Easily compare relevant journals to place for publication
Enter your manuscript details to see a list of journals Manuscript title	most suitable for your research.	
microalgae and biomediation application		
Manuscript text		
nitrogen and phosphate treatment		






SUBMISSION OF A REVIEW MANUSCRIPT

- Some journals accept submission of a review manuscript only by <u>invitation</u>
- Some journals allow submission of <u>only review</u> <u>manuscript</u>
- Some Journals allow submission of <u>both</u>
 (Original research article and review article)
- Some Journals Editors ask authors <u>CV</u> to verify expertise in the field

87

WHATS ARE CHALLENGES

- · Need to be steadfast, patient, never give up
- Sometimes rejected after submission of many times in different journals
- Challenging comments from editors/reviewers
- Identify alternatives
- · Lack of expertise

91

Su Shiung Lam Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu. lam@umt.edu.my